محاسبه جوابهای انفجاری برای معادلات دیفرانسیل مرتبه دوم با استفاده از تکنیک مقیاس گیری مجدد
thesis
- دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد تهران مرکزی - دانشکده علوم پایه
- author نغمه ملکی
- adviser محمد علی فریبرزی عراقی جلیل رشیدی نیا
- Number of pages: First 15 pages
- publication year 1389
abstract
یکی از حالتهایی که برای جواب معالادت دیفرانسیل معمولی با مقدار اولیه مرتبه دوم پیش می آید آن است که جواب معادله مشتق آن در یک زمان متناهی بسیار بزرگ شده و به سمت بینهایت میل می کند این کار تحقیقاتی به تکنیک جدیدی اشاره دارد بطوری که معادلات دیفرانسیل معمولی با مقدار اولیه مرتبه دوم که جواب آنها منجر به بسیاری از رفتارهای ناپایدار می شود را به طور موثری حل می کند.
similar resources
روش هم محلی ژاکوبی با مرتبه بالا برای معادلات دیفرانسیل کسری تک مرتبه ای غیر خطی
This article has no abstract.
full textبهبود روش تجزیه لاپلاس برای حل معادلات دیفرانسیل مسائل مقدار اولیه مرتبه دوم منفرد
در این مقاله ما بهبود روش تجزیه لاپلاس برای حل مسائل مقدار اولیه معادلات دیفرانسیل معمولی از مرتبه دوم را به کار می بریم. روش پیشنهاد شده می تواند برای مسائل خطی و غیرخطی به کار برده شود.
full textبهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری
تاکنون روش تجزیه آدومیان بهطور گستردهای برای حل انواع معادلات دیفرانسیل بهکار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روشهای دیگر ازجمله روشهای هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جوابهای تحلیلی-تقریبی از انواع معادلات دیفرانسیل میباشد، در این مقاله سعی شده با بهکارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...
full textبررسی جوابهای معادلات دیفرانسیل مرتبه کسری با استفاده از نظریه نقطه ثابت
معادلات دیفرانسیل کسری کاربردهای بسیاری در فناوریهای جدید مانند توصیف پسبندگی یا کشش مواد پلاستیکی نانو و مدلهای اقتصادی و نظریه کنترل سیستمهای دینامیکی دارند. در معادلات دیفرانسیل اغلب از تکنیک های مشخصی مانند روش تکراری پیکارد برای حل معادله استفاده می کنند حال آنکه در حل معادلات دیفرانسیل کسری بهتر است از تکنیک های جدید برای حل این نوع معادلات استفاده نماییم. در این رساله با بکارگیری نظریه ن...
15 صفحه اولپایداری ناارشمیدسی هایرز-اولام معادلات دیفرانسیل خطی ناهمگن مرتبه دوم
فرض کنیم فضای نرمدار ناارشمیدسی اعداد حقیقی باشد. معادله دیفرانسیل خطی ناهمگن مرتبه دوم با ضرایب غیرثابت را در نظر میگیریم که در آن توابع داده شده پیوسته هستند. در این مقاله پایداری هایرز-اولام این معادله را در فضای نرمدار ناارشمیدسی اعداد حقیقی ثابت میکنیم. معادله دیفرانسیل خطی ناهمگن مرتبه دوم با ضرایب غیرثابت را در نظر میگیریم که در آن توابع داده شده پیوسته هستند. در این مقاله پایداری ه...
full textبهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری
تاکنون روش تجزیه آدومیان بهطور گستردهای برای حل انواع معادلات دیفرانسیل بهکار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روشهای دیگر ازجمله روشهای هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جوابهای تحلیلی-تقریبی از انواع معادلات دیفرانسیل میباشد، در این مقاله سعی شده با بهکارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...
full textMy Resources
document type: thesis
دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد تهران مرکزی - دانشکده علوم پایه
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023