محاسبه جوابهای انفجاری برای معادلات دیفرانسیل مرتبه دوم با استفاده از تکنیک مقیاس گیری مجدد

thesis
abstract

یکی از حالتهایی که برای جواب معالادت دیفرانسیل معمولی با مقدار اولیه مرتبه دوم پیش می آید آن است که جواب معادله مشتق آن در یک زمان متناهی بسیار بزرگ شده و به سمت بینهایت میل می کند این کار تحقیقاتی به تکنیک جدیدی اشاره دارد بطوری که معادلات دیفرانسیل معمولی با مقدار اولیه مرتبه دوم که جواب آنها منجر به بسیاری از رفتارهای ناپایدار می شود را به طور موثری حل می کند.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

بهبود روش تجزیه لاپلاس برای حل معادلات دیفرانسیل مسائل مقدار اولیه مرتبه دوم منفرد

در این مقاله ما بهبود روش تجزیه لاپلاس برای حل مسائل مقدار اولیه معادلات دیفرانسیل معمولی از مرتبه دوم را به کار می بریم. روش پیشنهاد شده می تواند برای مسائل خطی و غیرخطی به کار برده شود.

full text

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

full text

بررسی جوابهای معادلات دیفرانسیل مرتبه کسری با استفاده از نظریه نقطه ثابت

معادلات دیفرانسیل کسری کاربردهای بسیاری در فناوریهای جدید مانند توصیف پسبندگی یا کشش مواد پلاستیکی نانو و مدلهای اقتصادی و نظریه کنترل سیستمهای دینامیکی دارند. در معادلات دیفرانسیل اغلب از تکنیک های مشخصی مانند روش تکراری پیکارد برای حل معادله استفاده می کنند حال آنکه در حل معادلات دیفرانسیل کسری بهتر است از تکنیک های جدید برای حل این نوع معادلات استفاده نماییم. در این رساله با بکارگیری نظریه ن...

15 صفحه اول

پایداری ناارشمیدسی هایرز-اولام معادلات دیفرانسیل خطی ناهمگن مرتبه‌ دوم

فرض کنیم فضای نرمدار ناارشمیدسی اعداد حقیقی باشد. معادله دیفرانسیل خطی ناهمگن مرتبه‌ دوم با ضرایب غیرثابت را در نظر می‌گیریم که در آن توابع داده شده پیوسته هستند. در این مقاله پایداری هایرز-اولام این معادله را در فضای نرمدار ناارشمیدسی اعداد حقیقی ثابت می‌کنیم. معادله دیفرانسیل خطی ناهمگن مرتبه‌ دوم با ضرایب غیرثابت را در نظر می‌گیریم که در آن توابع داده شده پیوسته هستند. در این مقاله پایداری ه...

full text

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد تهران مرکزی - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023